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Exact solution for a degenerate Anderson impurity
in the U→∞ limit embedded into a correlated host?
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Abstract. We consider the one-dimensional t−J model, which consists of electrons with spin S on a lattice
with nearest neighbor hopping t constrained by the excluded multiple occupancy of the lattice sites and
spin-exchange J between neighboring sites. The model is integrable at the supersymmetric point, J = t.
Without spoiling the integrability we introduce an Anderson-like impurity of spin S (degenerate Anderson
model in the U →∞ limit), which interacts with the correlated conduction states of the host. The lattice
model is defined by the scattering matrices via the Quantum Inverse Scattering Method. We discuss the
general form of the interaction Hamiltonian between the impurity and the itinerant electrons on the lat-
tice and explicitly construct it in the continuum limit. The discrete Bethe ansatz equations diagonalizing
the host with impurity are derived, and the thermodynamic Bethe ansatz equations are obtained using
the string hypothesis for arbitrary band filling as a function of temperature and external magnetic field.
The properties of the impurity depend on one coupling parameter related to the Kondo exchange coupling.
The impurity can localize up to one itinerant electron and has in general mixed valent properties. Ground-
state properties of the impurity, such as the energy, valence, magnetic susceptibility and the specific heat
γ coefficient, are discussed. In the integer valent limit the model reduces to a Coqblin-Schrieffer impurity.

PACS. 75.20.Hr Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions
– 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phenomena – 71.27.+a Strongly
correlated electron systems; heavy fermions

1 Introduction

Impurities play an important role in strongly correlated
electron systems, specially in one-dimension (1D), where
even a small amount of defects may change the properties
drastically. Interactions in the host are particularly impor-
tant in 1D, where the system changes from normal Fermi
liquid to Luttinger liquid [1]. Effects of the interactions on
the properties of an impurity have been investigated by
bosonization, renormalization-groups, poor man’s scaling,
boundary conformal field theory [2], and the Bethe Ansatz
[3–7].

An impurity introduced into an integrable host usu-
ally destroys the integrability. The interaction between
the host and impurity has to have a special form in or-
der to preserve the integrability. Andrei and Johannesson
[8] (see also Refs. [9,10]) incorporated a magnetic impu-
rity of arbitrary spin into the isotropic spin-1

2 Heisenberg
chain without spoiling the integrability.
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In recent papers we succeeded in constructing 1D
integrable correlated electron lattice models with a mag-
netic impurity via the quantum inverse scattering method
[4–7]. Several combinations of hosts, e.g. two supersym-
metric variants of the non-degenerate t − J model and
the Hubbard model, and impurities, e.g. exchange and
intermediate valence impurities, have been considered.
The scattering matrix of the electrons in the host and
the scattering matrix of electrons with the impurity have
to satisfy the triangular Yang-Baxter relation. This is
the necessary and sufficient condition for the integra-
bility, which imposes restrictions on the impurity. The
overall picture emerging from this study is: (i) Corre-
lations in the host strongly couple to the charge sec-
tor of the impurity without affecting the spin sector.
The screening of the impurity spin is then unchanged
with respect to free electrons. (ii) The correlations drive
the impurity away from integer valence into the mixed
valence region with the concomitant increase of the
Kondo temperature. A fraction of itinerant electron (hole)
is localized at the impurity site. (iii) The impurity is
placed on a link of the chain and interacts with both
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neighboring lattice sites. Hence, the impurity interacts
with both partial waves, i.e. with states of even and odd
parity with respect to the impurity site, in contrast with
the situation in a noninteracting host, where the coupling
is only with even parity (s-wave) conduction states. (iv)
The coupling parameter between impurity and host is the
impurity rapidity, p0, which on the one hand determines
the Kondo temperature and on the other hand introduces
a chirality (right-left asymmetry) into the chain. (v) The
impurity is a forward scatterer only and hence does not
give rise to boundstates into the system.

In this paper we extend this investigation to an impu-
rity with orbital degrees of freedom. The possibly simplest
impurity with combined spin and orbital degeneracy cou-
pled via a large spin-orbit interaction is the degenerate
Anderson impurity in the U → ∞ limit. This impurity
model is an adequate representation for Ce and Yb ions
in mixed valent states. The model for the impurity in a
noninteracting host has been solved long ago via nested
Bethe Ansätze [11,12]. The results are in good quantita-
tive agreement with experimental data for modestly heavy
fermion (Yb and Ce) alloys and compounds [12,13]. The
ligand atoms in heavy fermion compounds frequently in-
volve correlated states such as p and d orbitals, so that
the effects of these correlations on the impurity should be
studied. A similar situation occurs with impurities embed-
ded into high Tc cuprates.

All cases of magnetic impurities in correlated hosts
studied so far do not involve orbital degeneracy,
with the exception of a recent contribution on the
Coqblin-Schrieffer impurity of spin S embedded into the
SU(2S+2)-invariant (the spin and the charge play iden-
tical roles) supersymmetric t − J model [14]. The host
considered in the present paper is the graded (FNB)
degenerate supersymmetric t − J model, in which the
N = 2S + 1 spin degrees of freedom have fermion (F )
symmetries, while the charge is a boson (B). This model
is the straightforward extension of the standard spin-1/2
supersymmetric t−J model [15–18] to N spin components
and its diagonalization using N nested Bethe Ansätze can
be found in references [19,20].

The rest of the paper is organized as follows. The suffi-
cient condition for the integrability is the factorization of
the many-electron scattering matrix into two-particle scat-
tering matrices (Yang-Baxter triangular relation), which
imposes conditions on the scattering matrices between
itinerant electrons and of electrons with the impurity.
The model is then defined by the scattering matrices via
the Quantum Inverse Scattering Method [21]. The vertex
weights, the monodromy matrix, the diagonalization of
the transfer matrix and the discrete Bethe ansatz equa-
tions are introduced in Section 2. These equations define
the lattice model and determine the properties of the im-
purity. In Section 2 the interaction Hamiltonian between
the impurity and the correlated itinerant electrons is
constructed for the continuum limit. In Section 3 we
classify the solutions of the Bethe ansatz equations ac-
cording to the string hypothesis and derive the thermody-
namic Bethe ansatz equations. The groundstate and low-T

thermodynamic properties of the impurity are studied in
Section 4. The impurity can absorb (and release again) one
conduction electron and form an effective spin S. The im-
purity has therefore intermediate valence character, which
can be changed as a function of a model parameter (im-
purity rapidity). In the integer valent limit we relate our
model to the Coqblin-Schrieffer impurity. A summary with
concluding remarks follows in Section 5.

2 Transfer matrix and the Bethe ansatz
equations

We begin this section by briefly restating the results for
the supersymmetric t − J model we need here. Then we
introduce the impurity scattering matrix, construct the
monodromy matrix and derive the discrete Bethe ansatz
equations for the lattice model. We present the general
form of the lattice interaction Hamiltonian between the
impurity and the correlated itinerant electrons. Finally,
we explicitly construct the Hamiltonian in the continuum
limit (Luttinger liquid limit).

2.1 Degenerate supersymmetric t− J model

The one-dimensional t−J model is defined by the Hamil-
tonian [19]

H0 = −t
∑
is

P
(
c†isci+1s + c†i+1scis

)
P

+ J
∑
iss′

(
c†iscis′c

†
i+1s′ci+1s − nisni+1s′

)
, (1)

where c†is creates an electron of spin component s (s ≤ S)
at the site i, P is a projector that excludes the multiple
occupancy of every site, and nis = c†iscis is the number
operator for site i and spin component s. Here J is the ex-
change coupling (assumed antiferromagnetic) and without
loss of generality t can be equated to 1. The generalized
spin S can be thought of as composed of spin and orbital
degrees of freedom.

Model (1) is only integrable for J = t, i.e. at the su-
persymmetric point [15–17]. The scattering matrix for two
electrons with wavenumbers k1 and k2 then takes the form
[17]

X̂(k1, k2) =
(p1 − p2)Î + iP̂

p1 − p2 + i
, (2)

where p = 1
2cot(k/2), Î = δs1s′1δs2s′2 and P̂ = δs′1s2δs′2s1

are the identity and permutation operators for the spin
indices, respectively. Here unprimed (primed) spin indices
refer to states before (after) scattering. It is easy to verify
that the two-electron scattering matrix satisfies the Yang-
Baxter triangular relation

X
s1s
′
1

s2s′2
(p1 − p2)X

s′1s
′′
1

s3s′3
(p1 − p3)X

s′2s
′′
2

s′3s
′′
3

(p2 − p3) =

X
s2s
′
2

s3s′3
(p2 − p3)X

s1s
′
1

s′3s
′′
3
(p1 − p3)X

s′1s
′′
1

s′2s
′′
2

(p1 − p2), (3)
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where repeated indices are summed over. Relation (3), in
addition to the excluded multiple occupancy of sites, are
necessary and sufficient conditions for the integrability of
equation (1). The energy for a particle of wavenumber k
is [17]

E = −2 cos(k) = −2 + 2
1/2

p2 + 1/4
· (4)

2.2 Impurity scattering matrix

We introduce the impurity via its scattering matrix with
the itinerant electrons. If the integrability of the model
is to be preserved, the impurity scattering matrix Ŝ has
to satisfy the following triangular Yang-Baxter relation
[12,22]

X
s1s
′
1

s2s′2
(p1 − p2)S

s′1s
′′
1

MM ′(p1 − p0)S
s′2s
′′
2

M′M′′(p2 − p0) =

S
s2s
′
2

MM ′(p2 − p0)S
s1s
′
1

M′M′′(p1 − p0)X
s′1s
′′
1

s′2s
′′
2

(p1 − p2), (5)

where the sum over repeated indices is implicit. The index
M refers to the spin component of the magnetic impurity.
There is not a unique impurity scattering matrix satisfying
(5), i.e. in principle, more than one impurity form could
be constructed without destroying the integrability of the
supersymmetric t− J model.

In this paper we consider the impurity scattering ma-
trix [11,12]

Sσσ
′

MM ′(p− p0) = δσσ′δMM ′
p− p0 + i/2

p− p0 − i/2
, (6)

where again the unprimed (primed) indices refer to the
incoming (outgoing) states and necessarily |M | ≤ S.
The scattering matrix is diagonal in the spin indices, i.e.
the impurity couples to the charge sector via resonant
scattering. The impurity is then capable of temporarily
absorbing one conduction electron to form an effective spin
S, i.e. the groundstate is a linear superposition of two dif-
ferent electronic configurations, namely the one without
electrons and the one with one localized electron. This
is characteristic of intermediate valence systems [11,12].
Here p0 is the parameter that controls the degree of “va-
lence admixture”. Note that both, equations (2, 6), are
unitary.

Note that in equation (6) we could have chosen an
arbitrary imaginary part for the resonance phase shift.
This situation was studied in reference [3] for p0 = 0 and
S = 1

2 , which corresponds to a nonmagnetic impurity since
the double occupation of the impurity site by electrons is
not forbidden. The present choice of phase shift, however,
refers to the well-established physical situation of interme-
diate valent Ce and Yb ions, i.e. to a magnetic impurity.

2.3 Monodromy matrix and Bethe ansatz equations

The monodromy matrix [12,21,22] is defined as

L
{s′1...s

′
NM

′}τ ′

{s1...sNM}τ
(α;α1, . . . , αN+1) =

Xτ ′µ1

s′1s1
(α1 − α)Xµ1µ2

s′2s2
(α2 − α) . . .

. . .X
µN−1µN
s′NsN

(αN − α)SµNτM′M (αN+1 − α), (7)

with the implicit summation over all the µj indices. With
respect to the indices τ and τ ′ the monodromy matrix
forms a 2×2 matrix, which we will denote L̂τ

′

τ (α) omitting
the spin indices and the parameters αj .

From the Yang-Baxter relations it follows that the
monodromy matrix satisfies the identity [12,21,22]

X
τ1τ
′
1

τ2τ ′2
(α− α′)L̂

τ ′1
τ3(α′)L̂

τ ′2
τ ′3

(α) =

L̂τ2τ ′2
(α)L̂τ1τ ′1

(α′)X
τ ′1τ3
τ ′2τ
′
3
(α − α′), (8)

where the sum over repeated indices is implicit. With the
help of this identity it can be shown that transfer ma-
trices, defined as T̂ (α) =

∑
τ L̂

τ
τ (α), at different α values

(spectral parameter) commute and can all be diagonalized
simultaneously.

Consider now Ne itinerant electrons and the impurity
in a box of Na sites with periodic boundary conditions.
Periodic boundary conditions imposed on a given electron
means that it has to interchange position with all other
electrons. Each shifting through (permutation) involves a
two-particle scattering matrix, such that when the particle
is back at the original position we obtained an operator
that consists of a product of (Ne − 1) electron-electron

scattering matrices, X̂, and one scattering matrix due to
the impurity, Ŝ, i.e.

T̂j(kj) = X̂−1
j,j+1(pj − pj+1) . . . X̂−1

j,N (pj − pN)

× Ŝ−1
j (pj − p0)X̂−1

j,1 (pj − p1) . . . X̂−1
j,j−1(pj − pj−1). (9)

The periodic boundary condition for each electron gives
rise to one such operator, i.e. j = 1, . . . , Ne, and the Ne
operators have to be diagonalized simultaneously. The cor-
responding eigenvalues are

exp(ikjNa) =

[
pj + i/2

pj − i/2

]Na
. (10)

With αN+1 = p0, αl = pl for l = 1, . . . , Ne and α =
pj, j = 1, . . . , Ne, equations (9) are just the trace over
the monodromy matrix, which as argued above can all be
diagonalized simultaneously.

The procedure to diagonalize the transfer matrices is
standard and will not be repeated here. The starting point
is the totally spin-polarized state and other wavefunc-
tions are constructed by flipping spins in the system. The
Bethe Ansatz equations are the conditions under which
a wavefunction corresponding to a given Young tableau
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is an eigenstate of the transfer matrix eigenvalue prob-
lem. This eigenvalue problem has been solved by
Sutherland [23] for an arbitrary Young tableau by means
of a sequence of additional (N − 1) nested Bethe Ansätze.
Each Bethe Ansatz leads to a new eigenvalue problem with
the number of spin components reduced by one and gives
rise to a set of rapidities. This procedure is repeated until
all internal degrees of freedom are eliminated. As a result,

N sets of rapidities {ξ(l)
α }, l = 0, · · · , N − 1, are obtained,

which are selfconsistently determined by the Bethe Ansatz
equations [19,20]. The set for l = 0 corresponds to the

charge rapidities, ξ
(0)
α = pα = 1

2 cot(kα/2), where {kα}
are the wavenumbers of the particles, while the other sets
are associated with the spin degrees of freedom. All ra-
pidities within a given set have to be different to ensure
linearly independent wavefunctions. The discrete Bethe
Ansatz equations for the degenerate t− J model with im-
purity are [19]

pj−p0+ 1
2 i

pj−p0−
1
2 i

[
pj+

1
2 i

pj−
1
2 i

]Na
=
M1∏
β=1

pj−ξ
(1)
β + 1

2 i

pj−ξ
(1)
β −

1
2 i
,

j = 1, . . . , Ne, (11)

Ml−1∏
β=1

ξ
(l)
α − ξ

(l−1)
β + 1

2 i

ξ
(l)
α − ξ

(l−1)
β − 1

2 i

Ml+1∏
β=1

ξ
(l)
α − ξ

(l+1)
β + 1

2 i

ξ
(l)
α − ξ

(l+1)
β − 1

2 i
=

−
Ml∏
β=1

ξ
(l)
α − ξ

(l)
β + i

ξ
(l)
α − ξ

(l)
β − i

β = 1, . . . ,M (l), l = 1, · · · , N − 1, M0 ≡ Ne,

MN ≡ 0, (12)

where Ml is the number of rapidities in the set {ξ(l)
α }.

If nS−m denotes the number of electrons with spin com-
ponent m and Mi+1 = Mi − ni, then necessarily Ne ≡
M0 ≥ M1 ≥ M2 ≥ · · · ≥ MN−1 ≥ MN ≡ 0. This solu-
tion corresponds to the Young tableau (M0 −M1,M1 −
M2, · · · ,MN−2−MN−1,MN−1−MN). The Bethe Ansatz
equations are only a basis of states within this subspace.
The energy eigenvalues of the Hamiltonian (1) and the
magnetization are given by

E = −2Ne + 2

M0∑
α=1

1
2

(ξ
(0)
α )2 + 1

4

Sz = 1
2 (N − 1)Ne −

N−1∑
l=1

Ml. (13)

The first factor on the left-hand side in equation (11) arises
from the impurity. The remaining factors correspond to
the supersymmetric t− J host.

2.4 Impurity Hamiltonian

Our model is defined by the scattering matrices, (2) and
(6), via the Quantum Inverse scattering Method. By con-
struction of the transfer matrix the impurity spin can

be assumed on a given link and interacting only with
the sites joined by the link. The Hamiltonian and higher
conserved currents, which describe the interaction be-
tween the impurity and the itinerant electrons can be
obtained by differentiating the logarithm of the trans-
fer matrix T̂ (α) with respect to the spectral parameter
α at the point α = 0. The first derivative determines the
Hamiltonian of the lattice interacting with the impurity,
Ht−J,imp = H0 +Himp, where H0 is given by equation (1).
H0 can conveniently be written in terms of Hubbard op-

erators as H0 =
∑Na−1
n=1 Hn,n+1, where [18]

Hn,n+1 = −
∑
s,s′

(Xs,0
n X0,s

n+1 +X0,s
n Xs,0

n+1

−Xs,s′

n Xs′,s
n+1 +X0,0

n X0,0
n+1). (14)

Situating the impurity on the link joining the sites Na
and 1, we obtain for the impurity Hamiltonian

Himp = h1(p0)(HNa,imp +Himp,1 + {HNa,imp,Himp,1})

+ h2(p0)HNa,1 + ih3(p0)[(HNa,imp +Himp,1),HNa,1],
(15)

where

HNa,imp = −
∑
s

(Xs,0
Na
X0,s
imp +X0,s

Na
Xs,0
imp

−Xs,s
Na
Xs,s
imp +X0,0

Na
X0,0
imp)

Himp,1 = −
∑
s

Xs,0
impX

0,s
1 +X0,s

impX
s,0
1

−Xs,s
impX

s,s
1 +X0,0

impX
0,0
1 ). (16)

Here Xa,b = |a〉〈b| are the Hubbard operators (a, b = 0, s
with |s| ≤ S) and the square (curly) bracket in (15) de-
notes commutator (anticommutator). Note that both host
and impurity states are restricted to only one particle (or
hole) at each site. h1(p0) and h2(p0) are even functions
of p0 and h3(p0) is an odd function of p0. The impurity
Hamiltonian breaks the parity (P) and the time reversal
(T) symmetries separately, but, of course, PT is conserved.
The sign of the parameter p0 is only important if finite size
effects are considered, since it gives rise to a mesoscopic
momentum.

To gain some insight into the physics of the impurity
and its interaction with the conduction electrons, it is in-
structive to derive the Hamiltonian in the continuum limit
of the model, i.e. in the limit where the lattice constant
tends to zero. In the continuum limit we can linearize the
kinetic energy in the momentum around the Fermi level
and restrict ourselves to low-energy excitations. Assume
the two Fermi points are given by ±kFS related to ±pFS
by pFS = 1

2 cot(kFS/2). Denoting v = [2 sin(kFS/2)]−2

the group velocity of the electrons, the resonance phase
shift corresponds to an effective impurity Hamiltonian

Himp = ε
∑
s

|s〉〈s|

+ V
∑
s

∫
dx δ(x)

[
c†s(x)|0〉〈s| + |s〉〈0|cs(x)

]
, (17)
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where the hybridization V has to be equated to v−1/2.
Here ε is related to p0 and represents the energy differ-
ence between the two electronic configuration relative to
the Fermi level. The impurity states are denoted by the
bra and ket. The two partial waves in 1D, e.g. forward and
backward moving electrons, can be transformed into even
and odd parity states about the impurity site. Odd parity
states do not interact directly with the impurity in the
continuum limit (contact potential), and affect the impu-
rity only through the interactions in the host (Luttinger
liquid).

There is a fundamental difference between the im-
purity embedded in the noninteracting gas of electrons
[11,12] and in the correlated electron gas discussed here.
In the former case the properties of the impurity are de-
termined as a function of two parameters, namely, ε and
V , so that charge and spin-fluctuations can occur on dif-
ferent energy scales. The impurity in the correlated gas of
electrons has only one free parameter, p0, while the second
parameter is fixed by the condition of integrability. The
charge fluctuations and the Kondo screening occur on the
same energy scale in the present case.

3 Thermodynamics

In this section we first classify the possible states of the
system according to the string hypothesis, then we derive
the thermodynamic Bethe ansatz equations, and finally
we briefly discuss the T → 0 (groundstate) limit of the
thermodynamic equations.

3.1 Classification of states

Each eigenstate of the system is specified by sets of rapidi-
ties representing a solution of the discrete Bethe Ansatz
equations (11, 12). The rapidities have in general complex
values and in the thermodynamic limit (large Na, Ne and
Ml, keeping the ratios constant), they can be classified
according to:

(i) real charge rapidities, belonging to the set {ξ(0)
α },

which correspond to unpaired propagating electrons;
(ii) complex spin and charge rapidities, which corre-

spond to boundstates of electrons with different spin com-
ponents; and

(iii) strings of complex spin rapidities, which represent
bound spin states.
The attractive interaction between electrons builds spin
complexes of up to N electrons. A complex of n electrons
(n ≤ N) is characterized by one real ξ(n−1) rapidity and
in general complex ξ(l) rapidities, l < n− 1, given by

ξ(l)
p = ξ(n−1) +

i

2
p, l ≤ n− 1 ≤ 2S,

p =−(n− l − 1),−(n− l − 3), · · · , (n− l− 1). (18)

These spin and charge strings form classes (i) and (ii),
which are already present in the groundstate. In class (iii)
there is a set of strings of complex spin rapidities for each

set of real spin rapidities {ξ(l)
α }, l = 1, · · · , 2S. A string of

length n is given by

ξ(l)µ
αn = Λ(l)

αµ +
i

2
µ, µ = −(n− 1),−(n− 3), · · · , (n− 1),

(19)

where Λ
(l)
αn is a real parameter and α is the running index

in each set.
The structure of the solutions of the Bethe ansatz

equations is determined by the host (supersymmetric t−J
model) [19], rather than by the impurity. However, the
classification of states is also similar to that of the spin S
Anderson impurity in the U →∞ limit [24].

We introduce the usual distribution functions for each
class of rapidities and their “holes”, i.e. ρ(l)(ξ) and ρ

(l)
h (ξ)

for the real ξ
(l)
α , and σ

(l)
n (Λ) and σ

(l)
n,h(Λ) for the Λ

(l)
αn. In

view of the Fermi statistics obeyed by the rapidities, ‘par-
ticle’ and ‘hole’ densities are not independent, but coupled
by sets of linear integral equations. Fourier transforming
the equations we obtain [19]

ρ̂
(l)
h (ω) + ρ̂(l)(ω) +

2S∑
q=0

ρ̂(q)(ω)

× exp

(
−
|ω|

2
(l + q − pl,q)

)
sinh[ω(pl,q + 1)/2]

sinh(ω/2)

+
∞∑
n=1

σ̂(l+1)
n (ω) exp

(
−n
|ω|

2

)
=exp

(
−(l+1)

|ω|

2

)
+

1

Na
exp

(
ip0ω−(l+ 1)

|ω|

2

)
, (20)

σ̂
(l)
m,h(ω) = ρ̂(l−1)(ω) exp

(
−m
|ω|

2

)
+
∞∑
n=1

[̂
σ(l−1)
n (ω)+σ̂(l+1)

n (ω)−2 cosh
(ω

2

)
σ̂(l)
n (ω)

]
× exp

(
−
|ω|

2
max(m,n)

)
sinh[ωmin(m,n)/2]

sinh(ω/2)
·

(21)

The last set of equations holds for m = 1, · · · ,∞ with

σ̂
(0)
m (ω), σ̂

(0)
m,h(ω), σ̂

(N)
m (ω), and σ̂

(N)
m,h(ω) being identically

zero, and pl,q = min(l, q)− δl,q. The hat denotes a Fourier
transform. The term proportional to 1/Na is due to the
impurity phase shift. In terms of the densities the energy
is given by [19]

E = −2Ne + 2Na

2S∑
m=0

∫
dξ ρ(m)(ξ)

(m+ 1)/2

ξ2 + (m+ 1)2/4
·

(22)

3.2 Thermal equilibrium

The above equations are valid quite generally for all states.
In thermal equilibrium the population of the energy levels
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is determined by the thermal dressed energy for each class
of rapidities defined as

ρ
(l)
h /ρ

(l) = exp(ε(l)/T ), σ
(l)
n,h/σ

(l)
n = exp(ϕ(l)

n /T ) = η(l)
n ,

(23)

which satisfy the following integral equations [19]

ε(2S)(ξ) = −2− µ+ 2πH1(ξ)

+T
2S−1∑
q=0

Fq+1 ? ln[1 + exp(−ε(q)/T )]

+TH2S ? ln[1 + exp(ε(2S)/T )], (24)

ln[1 + exp(ε(m)/T )] =
2π

T
F2S−m(ξ)

+ Fm+1 ? ln[1 + exp(ε(2S)/T )]

+
2S−1∑
q=0

{
Gcoshm+1,q+1 ? ln[1 + exp(−ε(q)/T )]

−Gm+1,q+1 ? ln[1 + η
(q+1)
1 ]

}
, (25)

ϕ(m)
n (Λ) = δn,1TG0 ? ln[1 + exp(−ε(m−1)/T )]

+ TG0 ? ln

{
[1+η

(m)
n+1][1+η

(m)
n−1]

[1+(η
(m+1)
n )−1][1+(η

(m−1)
n )−1]

}
, (26)

where the last equation holds for n = 1, ...,∞, the star

denotes convolution, µ is the chemical potential, η
(n)
0 ≡

0, η
(0)
n = η

(N)
n ≡ ∞ and the integration kernels are the

Fourier transform of

F̂m(ω) =
sinh(mω/2)

sinh(Nω/2)
,

Ĥm(ω) = exp(− 1
2 |ω|)

sinh(mω/2)

sinh(Nω/2)
,

Ĝl,q(ω) =
sinh(ωmin(l, q)/2) sinh[ω(N −max(l, q))/2]

sinh(Nω/2) sinh(ω/2)
,

Ĝcoshl,q (ω) = 2 cosh(ω/2)Ĝl,q(ω),

Ĝ0(ω) = [2 cosh(ω/2)]−1. (27)

In order to be completely defined, equations (26) require

asymptotic conditions for the ϕ
(l)
n as n tends to infinity.

These boundary conditions are determined by the splitting
scheme of the (2S+1)-fold multiplet, i.e. the Zeeman and
crystalline field energies. For instance for a pure Zeeman
splitting we obtain

lim
n→∞

1

n
ϕ(l)
n (Λ) = H ≥ 0. (28)

The equilibrium free energy of the system is the sum
of the free energies of the host and the impurity

FtJ

Na
= −

T

π

2S∑
m=0

∫
dξ

1
2 (m+ 1)

ξ2 + 1
4 (m+ 1)2

× ln[1 + exp(−ε(m)(ξ)/T )],

Fimp = −
T

π

2S∑
m=0

∫
dξ

1
2 (m+ 1)

(ξ − p0)2 + 1
4 (m+ 1)2

× ln[1 + exp(−ε(m)(ξ)/T )]. (29)

The expressions for the t− J model and the impurity are
analogous, except for the shift of the argument by p0. This
is evident in view of equation (11).

3.3 Groundstate equations

The groundstate integral equations are obtained from
equations (24, 25, 26) in the limit T → 0. From equa-

tions (26, 28) it follows that the energy potentials ϕ
(l)
n are

positive over the entire Λ range for all l and n ≥ 1. Hence,
as T → 0 the spin string states are not occupied, and
only the ε(m) bands can be populated. The zeroes of the
dressed energies define the Fermi surface (integration lim-
its), ε(m)(±Bm) = 0 and ε(2S)(±Q) = 0, for spinons and
charges, respectively. Empty states (holes) correspond to
a positive potential, while a negative dressed energy refers
to occupied states (particles). The integration limits are
functions of µ and H.

In the limit T → 0 the integral equations satisfied by
the dressed energies and densities are of the general form

X(2S)(ζ)−

∫ Q

−Q
dξ′ X(2S)(ξ′)H2S(ξ − ξ′)

+
2S−1∑
q=0

∫
|ξ′|>Bq

dξ′ X(q)(ξ′)Fq+1(ξ−ξ′)=Z2S(ξ),

X(m)(ξ) +
2S−1∑
q=0

∫
|ξ′|>Bq

dξ′ X(q)(ξ′)Km+1,q+1(ξ − ξ′)

−

∫ Q

−Q
dξ′ X(2S)(ξ′)Fm+1(ξ − ξ′) = Zm(ξ), (30)

where Zl(ξ) are the driving terms and Kl,r(ξ) is the
Fourier transform of

K̂l,r(ω) = −δl,r + exp(|ω|/2)Ĝl,r(ω). (31)

For X(m) = ε(m) the driving terms are

Z2S(ξ) = −2− µ+ 2πH1(ξ),

Zm(ξ) = 2πF2S−m(ξ)−m(N −m)H/2, (32)

where we assumed a Zeeman splitting, while for X(m) =

ρ(m) + ρ
(m)
h the driving terms are

Z2S(ξ) = H1(ξ) +H1(ξ − p0)/Na,

Zm(ξ) = F2S−m(ξ) + F2S−m(ξ − p0)/Na, (33)
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where the terms proportional to N−1
a are the impurity

terms.
The energy of the system is given by equation (22) with

the integration restricted to the intervals |ξ| > Bm. The
number of electrons with each spin component is given by
(m = 1, · · · , N , and B2S = Q)

nm = Na

2S∑
q=N−m

∫
|ξ|>Bq

dξ ρ(q)(ξ). (34)

In zero magnetic field we have Bq =∞ for all q, except Q
which is finite [19].

4 Properties of the impurity

In this section we present results for the impurity embed-
ded in the supersymmetric t− J lattice. We first consider
the groundstate properties in the mixed valent regime,
then we discuss the low temperature specific heat and fi-
nally the integer valent limit (Coqblin-Schrieffer model).
Since the impurity is driven by the host, the supersym-
metric t − J model, some impurity properties are then
expected to be different from those of the impurity em-
bedded into a noninteracting electron gas.

4.1 Groundstate properties

Equations (20) are linear in the densities and have driving
terms arising from the itinerant electrons and from the im-
purity. Hence, the density functions can be separated into
a host and an impurity contribution. The integral equa-
tions for the impurity densities are given by equations (30)
with the driving terms given by equation (33). In the ab-
sence of magnetic and crystalline fields only the ε(2S) band

is populated and ρ
(2S)
i is determined by

ρ
(2S)
i,h (ξ)+ρ

(2S)
i (ξ)−

∫ Q

−Q
dξ′ρ

(2S)
i,h (ξ′)H2S(ξ−ξ′)=H1(ξ−p0).

(35)

This integral equation is of the Fredholm type and dif-
fers from the one of the Anderson impurity in a free elec-
tron host, which is a Wiener-Hopf equation [11]. Note that
the impurity density function is not symmetric in the ar-
gument, the asymmetry being introduced by p0 in the
driving term. However, without loss of generality we can
symmetrize the driving term by considering the half-sum
for ±p0. This integral equation requires a numerical solu-
tion, except in the limits of low electron density (Q→∞)
and low “hole” density (Q → 0). It follows from equa-

tion (35) that 0 ≤ nimp = N
∫
|ξ|≥Q dξρ

(2S)
i (ξ) ≤ 1, i.e.

the impurity can localize up to one electron. The charge
susceptibility of the impurity is defined as

χch = ∂nimp
/
∂|p0|. (36)

The impurity groundstate energy, the number of electrons
localized by the impurity and the charge susceptibility are
shown in Figures 1 and 2 for N = 6 (mixed valent Ce
impurities) and N = 8 (mixed valent Y b impurities) as a
function of p0 for several bandfillings. Note that for p0 = 0

Fig. 1. (a) Impurity groundstate energy, (b) valence (fraction
of localized electron at the impurity site), (c) charge suscepti-
bility, and (d) logarithm of the ratio of the spin susceptibilities
of the impurity and host (per site) for N = 6 as a function of
the impurity rapidity p0. For p0 = 0 the impurity properties are
identical to the ones of the host. The four curves refer to dif-
ferent band-fillings of the host, i.e. n = 0.9541, 0.7351, 0.3501
and 0.1047, respectively. N = 6 corresponds to the situation
of a mixed valent Ce ion embedded into a metal.
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the impurity is just one more link in the chain and its prop-
erties are identical to those of the host (per lattice site).
Note that the energy and nimp are symmetric functions
of p0, while the impurity charge susceptibility vanishes
for p0 = 0. The charge susceptibility is largest when the
impurity rapidity is on resonance with the Fermi level.
The fraction of localized charge increases with |p0| when
the impurity rapidity enters the continuum of occupied
states.

The groundstate zero-field magnetic susceptibility is
obtained following standard procedures (see Refs. [11,12,
22]). For a small Zeeman splitting the integration limits
Bm for m = 0, · · ·, 2S−1 are finite but very large (tending
to ∞ as H tends to zero). The two Fermi points of each
spinon branch are then well separated and to leading order
in the field do not interfere with each other. To obtain
the linear response of the impurity to a magnetic field
the Fredholm equations for the spinon branches can be
reduced to a hierarchical sequence of Wiener-Hopf integral
equations. The leading set of equations determines the
zero-field susceptibility and is given by

ρ
(m)
i,h (ξ) + ρ

(m)
i (ξ)

+
2S−1∑
q=0

∫
ξ′>Bq

dξ′ ρ
(q)
i (ξ′)Km+1,q+1(ξ − ξ′)

=

∫ Q

−Q
dξ′ ρ

(2S)
i,h (ξ′)Fm+1(ξ − ξ′)

+
1

2

[
F2S−m(ξ − p0) + F2S−m(ξ + p0)

]
. (37)

The density ρ
(2S)
i,h is also influenced by the magnetic field,

through the remaining density distributions, but this ef-
fect is of higher order than leading and can be neglected.
Hence, in equation (37) we use the solution of equa-

tion (35) for ρ
(2S)
i,h and consider the right-hand side as the

driving term of the equations. Since there are two kinds of
driving terms (an independent term depending on p0 and

the term involving ρ
(2S)
i,h , the magnetization is the sum of

two contributions, the magnetization due to the impurity
spin and the magnetization arising from the valence ad-
mixture. Expanding the driving terms for large ξ (assum-
ing that Bm � Q) we obtain that all terms (even those
of the host) are proportional to exp(−2πξ/N), so that
asymptotically all the densities are proportional to each
other. This proportionality can be used to obtain the ra-
tio of the impurity and host magnetizations in small fields
without further calculation

χimp

χhost
=

cosh(2π|p0|/N)+

∫ Q

−Q
dξ cosh(2πξ/N)ρ

(2S)
imp,h(ξ)

1+

∫ Q

−Q
dξ cosh(2πξ/N)ρ

(2S)
host,h(ξ)

· (38)

The first term represents the Kondo susceptibility, while
the second term arises from the spin-fluctuations due to

the valence admixture. The absolute value of the host
susceptibility has been calculated in reference [20] and is
given by

χhost =
N(N2 − 1)

24π2

×

1 +

∫ Q

−Q
dξ cosh(2πξ/N)ρ

(2S)
host,h(ξ)

1 + (1/2π)

∫ Q

−Q
dξ cosh(2πξ/N)ε(2S)(ξ)

· (39)

The Kondo term of the susceptibility dominates over the
contribution due to the valence fluctuations as seen in Fig-
ures 1d and 2d, where the logarithm of the ratio (38) of
the impurity and host spin susceptibilities is displayed
as a function of p0 for several band fillings. For p0 = 0
this ratio is equal to 1 indicating once more that for
p0 = 0 the impurity is just one more link in the chain.
The dominance of the Kondo exponential is manifested
by the asymptotic straight line of slope 2π/N approached
for sufficiently large p0. Note that the susceptibility is an
even function of p0. For Q = 0 the host is an insulator
(no holes) with Ne = Na and nimp = 1, Eimp = 0 and
χimp/χhost = cosh(2π|p0|/N). In this limit the chain cor-
responds to the SU(N) Heisenberg antiferromagnet of spin
S = (N − 1)/2.

4.2 Low-temperature specific heat

Since the groundstate of the impurity is a singlet for all
parameters, the low-temperature specific heat is propor-
tional to the temperature and can be characterized by its
γimp coefficient. The γ coefficient is calculated from the
Sommerfeld expansion of the free energy, equation (29),
and the dressed energies, equations (24, 25),

γimp =
π2

3
(∂ε(2S))−1

[
H1(Q− p0)+H1(Q+p0)

]
+
π2

3

2S−1∑
q=0

(∂ε(q))−1
[
F2S−q(Bq−p0)+F2S−q(Bq+p0)

]
+ 2

∫ Q

−Q
dξ H1(ξ−p0)ε

(2S)
2 (ξ)

− 2
2S−1∑
q=0

∫
|ξ|>Bq

dξ F2S−q(ξ−p0)ε
(q)
2 (ξ), (40)

where ε(q) = ε
(q)
0 + T 2ε

(q)
2 , and (∂ε(q))−1 = |dε(q)

0 /dξ|−1
Bq

and (∂ε(2S))−1 = |dε(2S)
0 /dξ|−1

Q . Note that for p0 = 0 the
specific heat of the impurity is identical to that of the host,
calculated for arbitrary band filling and splitting scheme
in reference [25]. The same procedure as in reference [25]

will be followed here. The ε
(q)
2 can be written as

ε
(q)
2 (ξ) = (π2/6)

2S∑
r=0

(∂ε(r))−1 ϕ(q)
r (ξ), (41)
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Fig. 2. (a) Impurity groundstate energy, (b) valence (fraction
of localized electron at the impurity site), (c) charge suscepti-
bility, and (d) logarithm of the ratio of the spin susceptibilities
of the impurity and host (per site) for N = 8 as a function of
the impurity rapidity p0. For p0 = 0 the impurity properties are
identical to the ones of the host. The four curves refer to dif-
ferent band-fillings of the host, i.e. n = 0.9306, 0.7092, 0.2882
and 0.1143, respectively. N = 8 corresponds to the situation
of a mixed valent Yb ion embedded into a metal.

where ϕ
(q)
r (ξ) satisfies linearly coupled integral equations

of the form (30) with driving terms determined from equa-
tions (24, 25). Hence, all contributions to γ are propor-
tional to ∂ε−1

q for some q.

Fig. 3. Enhancement factor Rch for the impurity charge con-
tribution to the specific heat γimp over the one of the host,

(ρ
(2S)
imp (Q) + ρ

(2S)
imp (−Q))/(2ρ

(2S)
host(Q)) as a function of p0 for (a)

N = 6 and (b) N = 8 and the same parameters as in Figures 1
and 2.

Following algebraic manipulations similar to refer-
ence [25] we obtain

γimp =
π

6

2S∑
q=0

[
ρ

(q)
imp(Bq) + ρ

(q)
imp(−Bq)

]
[
vq ρ

(q)
host(Bq)

] , (42)

where B0 = Q and vq is the group velocity of the corre-
sponding excitation branch, given by

vq =
|dε(q)

0 (ξ)/dξ|Bq

2πρ
(q)
host(Bq)

· (43)

Note that the host densities are symmetric functions of
the rapidity, while the impurity densities are not, as a
consequence of the impurity rapidity. Setting p0 = 0 we
obtain the well-known result for the host

γhost/Na = (π/3)
2S∑
q=0

(
vq
)−1

. (44)

Expressions (42, 44) hold for arbitrary band filling and
level splitting.

Expression (42) simplifies in the absence of magnetic
and crystalline fields, where only the ε(2S) band is occu-
pied. The spin contribution arises from the empty bands
with Fermi surface at Bq = ±∞, which all contribute
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equally. After some algebra we obtain

γimp=
π

6

ρ
(2S)
imp (Q)+ρ

(2S)
imp (−Q)

v2S ρ
(2S)
host(Q)

+
π

3

(N − 1)

vsw

χimp

χhost
, (45)

where vsw is the spinwave velocity, which is inversely
proportional to the magnetic susceptibility of the host.
The second term in equation (45) is then proportional
to the impurity spin susceptibility, while the first term
is caused by the charge fluctuations. The interactions in
the host make the contribution from the charge sector
nonuniversal. The enhancement factor Rch for the impu-

rity charge term over the one of the host, i.e. (ρ
(2S)
imp (Q) +

ρ
(2S)
imp (−Q))/(2ρ

(2S)
host(Q)) is shown in Figure 3 for N = 6

and N = 8 and the same parameters as in Figures 1 and
2. For sufficiently large Q (relatively small band-filling)
the correlations in the host play a lesser role and Rch has
a peak when the impurity rapidity is on resonance with
the Fermi level. This is similar to the results obtained for
the impurity in an uncorrelated host, where the charge
contribution is just the charge susceptibility. For small Q
(low density of holons), on the other hand, the correlations
in the host suppress this peak. The latter situation is very
different from an Anderson impurity embedded into a free
electron host.

4.3 Coqblin-Schrieffer limit

The Kondo limit is obtained by suppressing the charge
excitations in the system. This integer valent limit is real-
ized for very large |p0| (|p0| � Q), i.e. a very small Kondo
temperature. Without loss of generality we may choose
p0 > 0. To leading order it is then sufficient to consider
only occupied states with ξ > 0, since the occupied states
with ξ < 0 are far off resonance with the impurity rapidity.
The first two terms on the right-hand side of equation (25)
can then be approximated as

2π

T
F2S−m(ξ) + Fm+1 ? ln[1 + exp(ε(2S)/T )]

≈ 2
εF

T
sin

(
π
m+ 1

N

)
exp

(
−

2πξ

N

)
, (46)

where we kept only the low-lying excitations, given by
large ξ, and εF is an energy scale of the order of the band
half-width.

We now introduce the rescaled variable λ = (2πξ/N)−
ln(εF /T ) and define

Θ
(l+1)
1 (λ) = exp[−ε(l)(ξ)/T ], Θ

(l)
n+1(λ) = η(l)

n (ξ). (47)

The thermodynamic Bethe Ansatz equations, (25) and
(26), now take the following form

ln[1 + (Θ
(l)
1 )−1] = 2 sin(πl/N)e−λ

−
2S∑
q=1

Gl,q ? ln[1 +Θ
(q)
2 ] +

2S∑
q=1

Gcoshl,q ? ln[1 +Θ
(q)
1 ], (48)

ln
(
Θ(l)
n

)
= G0 ? ln

{
[1+Θ

(l)
n+1][1+Θ

(l)
n−1]

[1+(Θ
(l+1)
n )−1][1+(Θ

(l−1)
n )−1]

}
,

(49)

where the argument in the integration kernels is now
(N/2π)λ and equation (49) holds for n ≥ 2 subject to the
asymptotic field condition. Suppressing the charge fluctu-
ations the impurity free energy can be cast into the form

Fimp = −
T

2π

2S∑
l=1

∫
dλ ln[1 +Θ

(l)
1 (λ)]

×
sin(πl/N)

cosh[λ+ ln(TK/T )]− cos(πl/N)
, (50)

where TK = εF exp(−2π|p0|/N) is the Kondo temper-
ature. After the variable change from ξ to λ, the only
dependence on p0 is in the free energy.

The coupled integral equations (48), (49) and (50) are
those of the Coqblin-Schrieffer model in a noninteract-
ing host [12,22,26]. The approximations made to cast the
problem into this form are (i) to suppress the valence fluc-
tuations (charge sector) and (ii) neglect the interference
of the two Fermi points for every class of excitations. The
latter is justified only if TK is very small (large |p0|). Then
only low-energy excitations play a role and the interact-
ing lattice can be approximated by a Luttinger liquid. As
we have already argued, in the continuum limit the im-
purity interacts only with states of even parity about the
impurity site.

The above results are valid for an arbitrary level split-
ting scheme.

5 Concluding remarks

Impurities play a relevant role in highly correlated electron
systems and may alter the properties of the system. In this
paper we pursued the exact solution of a degenerate An-
derson impurity (U →∞ limit) embedded into the 1D de-
generate supersymmetric t−J model. The impurity model
has only one free parameter, p0, that tunes the properties
of the impurity (charge and spin sectors). In contrast, the
same impurity in a free electron host has two parame-
ters, such that charge and spin-fluctuations can be varied
independently. The impurity is introduced via its scatter-
ing matrix with the conduction electrons of the host. The
scattering matrix in this case is a simple phase shift in
the charge sector. The impurity is located on a link and
interacts with the itinerant electrons on the two neighbor-
ing sites joined by this link. Although the impurity breaks
the translational invariance of the system, the condition
of integrability requires absence of backward scattering,
so that no additional boundstates are introduced into the
spectrum. The integrability makes our impurity problem
special, but we do not expect that deviations from this
condition will qualitatively affect the results.

The model is constructed from the scattering matri-
ces via the Quantum Inverse Scattering Method, which
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on the one hand defines the Hamiltonian and higher con-
served currents, while on the other hand it also yields the
discrete Bethe Ansatz equations diagonalizing the host
with impurity. The states of the system are then classi-
fied according to the string hypothesis and the thermody-
namic Bethe Ansatz equations are derived. We extensively
discussed groundstate properties and the low-temperature
specific heat for the intermediate valence situation. For the
integer-valent limit with a small TK (large |p0|) we recov-
ered the exact solution of the Coqblin-Schrieffer model.

The impurity can localize up to one conduction elec-
tron and is in general in a mixed valent state, consisting
of the linear superposition of the empty configuration and
the configuration of one localized electron. For N = 6 this
situation represents a Ce ion and for N = 8 to a Yb impu-
rity (if electrons and holes are interchanged). The prop-
erties of the impurity strongly depend on the band filling
of the host. In particular, for Q = 0 the itinerant band is
completely filled, and the host corresponds to the SU(N)
invariant Heisenberg chain. In this limit the impurity is
integer-valent and its magnetic susceptibility is enhanced
by the inverse of the Kondo exponential above the value
of the susceptibility of the host.

There are two contributions to the magnetic prop-
erties at T = 0, namely the Kondo magnetization and
the magnetization arising from spin-fluctuations due to
the valence admixture. The latter is always smaller than
the Kondo effect and can be neglected for most purposes.
The γ coefficient of the specific heat has contributions
arising from the charge fluctuations and from the spin sec-
tor. In the absence of spin and crystalline field splittings
the impurity contribution from the spin sector is enhanced
over the host contribution by a factor given by the ratio of
the respective spin susceptibilities. The contribution from
the charge sector, on the other hand, is non-universal and
depends strongly on the band filling.

To summarize, the model studied in this paper
confirms the general results derived previously for other
combinations of interacting host and magnetic impurity
[4–7,14]. The trends are the same, namely (a) the inter-
actions in the host drive the impurity into a mixed valent
state, (b) the Kondo exchange coupling is parametrized
by the impurity rapidity, (c) the impurity is on a link of
the chain and interacts with both neighboring sites (i.e.,
with even and odd parity states), and (d) the impurity is
a forward scatterer only and does not produce a bound
state split off from the continuum. The latter property is
clearly a non-universal feature of our model, consequence
of the integrability. All other properties are believed to be
general and generic.

It has been argued in reference [27] that an inte-
grable magnetic chain embedding an impurity with
periodic boundary conditions corresponds to an unstable
critical point with non-generic properties. The stable fixed
points for the Heisenberg chain with impurity are the
unperturbed chain and the chain with a break at
the impurity location. It was shown recently [28] that the

magnetic behavior of impurities in open and periodic in-
tegrable chains are identical for fields and temperatures of
the order of or smaller than the Kondo scale. This proof
and the similarities of our results with the impurity em-
bedded into the free electron gas are strong indications
that our results are generic and not specific to the inte-
grability.

The support of the Department of Energy under grant DE-
FG05-91ER45443 and the National Science Foundation under
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Fröjdh, H. Johannesson, Phys. Rev. Lett. 75, 300 (1995);
Phys. Rev. B, 53, 3211 (1996).

3. G. Bedürftig, F.H.L. Essler, H. Frahm, Phys. Rev. Lett.
77, 5098 (1996); Nucl. Phys. B 489, 697 (1997).

4. P. Schlottmann, A.A. Zvyagin, Phys. Rev. B 55, 5027
(1997).

5. A.A. Zvyagin, P. Schlottmann, J. Phys.-Cond. 9, 3543
(1997).

6. P. Schlottmann, A.A. Zvyagin, Nucl. Phys. B 501, 728
(1997).

7. A.A. Zvyagin, P. Schlottmann, Phys. Rev. B 56, 300
(1997).

8. N. Andrei, H. Johannesson, Phys. Lett. A 100, 108 (1984).
9. K. Lee, P. Schlottmann, Phys. Rev. B 37, 379 (1988).

10. P. Schlottmann, J. Phys.-Cond. 3, 6617 (1991).
11. P. Schlottmann, Z. Phys. B 49, 109 (1982); ibid. 51 49

(1983).
12. P. Schlottmann, Phys. Rep. 181, 1 (1989).
13. P. Schlottmann, Z. Phys. B 57, 23 (1984).
14. P. Schlottmann, J. Phys.-Cond. 10, 2525 (1998).
15. C.K. Lai, J. Math. Phys. 15, 167 (1974).
16. B. Sutherland, Phys. Rev. B 12, 3795 (1975).
17. P. Schlottmann, Phys. Rev. B 36, 5177 (1987).
18. F.H.L. Essler, V.E. Korepin, Phys. Rev. B 46, 9147 (1992).
19. P. Schlottmann, J. Phys.-Cond. 4, 7565 (1992).
20. P. Schlottmann, J. Phys.-Cond. 5, 313 (1993).
21. V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum

Inverse Scattering Method (Cambridge University Press,
Cambridge, 1993).

22. A.M. Tsvelick, P.B. Wiegmann, Adv. Phys. 32, 453 (1983).
23. B. Sutherland, Phys. Rev. Lett. 20, 98 (1968).
24. P. Schlottmann, Z. Phys. B 54, 207 (1984).
25. K. Lee, P. Schlottmann, J. Appl. Phys. 79, 6605 (1996).
26. N. Andrei, K. Furuya, J. Lowenstein, Rev. Mod. Phys. 55,

331 (1983).
27. E. Sorensen, S. Eggert, I. Affleck, J. Phys. A 26, 6757

(1993).
28. A.A. Zvyagin, H. Frahm, J. Phys.-Cond. 9, 9939 (1997);

A.A. Zvyagin, Phys. Rev. Lett. 79, 4641 (1997).


